AI Code Fixing Guides
Content
Professional documentation and insights
AI Code Fixing Guides
Learn how to identify, fix, and prevent common issues in AI-generated code. Transform ChatGPT prototypes into production-ready applications.
Why AI Code Needs Fixing
AI tools like ChatGPT, GitHub Copilot, and Claude are incredible for rapid prototyping. But they often generate code with:
- Security vulnerabilities (hardcoded secrets, SQL injection risks)
- Poor architecture (no separation of concerns, tight coupling)
- Missing error handling (assumes happy paths only)
- No testing strategy (works once, breaks later)
- Performance issues (N+1 queries, memory leaks)
This guide helps you spot and fix these issues before they reach production.
Common AI Code Problems
1. Security Issues
Problem: AI often generates code with security flaws because it prioritizes “making it work” over “making it secure.”
Common Examples:
- Hardcoded API keys and passwords
- Missing input validation
- SQL injection vulnerabilities
- Exposed sensitive data in logs
- CORS misconfiguration
How to Fix:
// Bad (AI-generated)
const apiKey = "sk-1234567890abcdef";
const query = `SELECT * FROM users WHERE id = ${req.params.id}`;
// Good (Production-ready)
const apiKey = process.env.API_KEY;
const query = `SELECT * FROM users WHERE id = ?`;
db.query(query, [req.params.id]);
Action Items:
- Move all secrets to environment variables
- Use parameterized queries or ORMs
- Implement input validation and sanitization
- Add authentication and authorization checks
- Enable security headers (CORS, CSP, HSTS)
2. Error Handling
Problem: AI assumes everything works perfectly. Real applications need robust error handling.
Common Examples:
- No try-catch blocks
- Crashes on network failures
- Silent failures
- Poor error messages for users
How to Fix:
// Bad (AI-generated)
async function fetchUser(id) {
const response = await fetch(`/api/users/${id}`);
return response.json();
}
// Good (Production-ready)
async function fetchUser(id) {
try {
const response = await fetch(`/api/users/${id}`);
if (!response.ok) {
throw new Error(`HTTP ${response.status}: ${response.statusText}`);
}
return await response.json();
} catch (error) {
console.error("Failed to fetch user:", error);
throw new Error("Unable to load user data. Please try again.");
}
}
Action Items:
- Wrap async operations in try-catch
- Validate API responses before processing
- Log errors for debugging
- Show user-friendly error messages
- Implement retry logic for transient failures
3. Performance Issues
Problem: AI writes code that “works” but doesn’t scale.
Common Examples:
- N+1 database queries
- Loading unnecessary data
- No caching strategy
- Synchronous operations blocking the main thread
- Memory leaks from unclosed connections
How to Fix:
// Bad (AI-generated) - N+1 Query Problem
async function getUsersWithPosts() {
const users = await db.query("SELECT * FROM users");
for (let user of users) {
user.posts = await db.query("SELECT * FROM posts WHERE user_id = ?", [
user.id,
]);
}
return users;
}
// Good (Production-ready) - Single Query with JOIN
async function getUsersWithPosts() {
const query = `
SELECT u.*, p.id as post_id, p.title, p.content
FROM users u
LEFT JOIN posts p ON u.id = p.user_id
`;
const rows = await db.query(query);
// Transform flat results into nested structure
return transformToNestedStructure(rows);
}
Action Items:
- Use database joins instead of multiple queries
- Implement pagination for large datasets
- Add caching for frequently accessed data
- Use lazy loading for heavy resources
- Profile and optimize bottlenecks
4. Code Organization
Problem: AI generates everything in one file with no structure.
Common Examples:
- 1000+ line files
- Mixed concerns (UI, business logic, database)
- No separation of routes, controllers, models
- Duplicate code everywhere
How to Fix:
// Bad Structure
app.js (2000 lines - everything in one file)
// Good Structure
/src
/routes
user.routes.js
auth.routes.js
/controllers
user.controller.js
auth.controller.js
/models
user.model.js
/middleware
auth.middleware.js
validation.middleware.js
/services
email.service.js
/utils
logger.js
app.js
Action Items:
- Separate concerns (MVC, Clean Architecture)
- Create reusable utilities
- Use dependency injection
- Implement a clear folder structure
- Extract business logic from routes
5. Missing Tests
Problem: AI doesn’t write tests. Your code works once, then breaks silently.
Common Examples:
- No unit tests
- No integration tests
- No test data or fixtures
- Untested edge cases
How to Fix:
// Add Unit Tests
describe("User Service", () => {
it("should create a new user with valid data", async () => {
const userData = { name: "John", email: "[email protected]" };
const user = await createUser(userData);
expect(user).toBeDefined();
expect(user.email).toBe("[email protected]");
});
it("should throw error for invalid email", async () => {
const userData = { name: "John", email: "invalid-email" };
await expect(createUser(userData)).rejects.toThrow("Invalid email");
});
});
Action Items:
- Write unit tests for business logic
- Add integration tests for API endpoints
- Test error cases and edge conditions
- Set up CI/CD to run tests automatically
- Aim for 70%+ code coverage
6. Environment Configuration
Problem: AI hardcodes values that should be configurable.
Common Examples:
- Hardcoded database URLs
- Fixed port numbers
- Environment-specific logic mixed in code
- No .env file support
How to Fix:
// Bad (AI-generated)
const app = express();
app.listen(3000);
mongoose.connect("mongodb://localhost:27017/myapp");
// Good (Production-ready)
require("dotenv").config();
const PORT = process.env.PORT || 3000;
const MONGO_URI = process.env.MONGO_URI || "mongodb://localhost:27017/myapp";
app.listen(PORT, () => {
console.log(`Server running on port ${PORT}`);
});
mongoose.connect(MONGO_URI, {
useNewUrlParser: true,
useUnifiedTopology: true,
});
Action Items:
- Use environment variables for all config
- Create .env.example file
- Document required environment variables
- Use different configs for dev/staging/production
- Never commit secrets to git
7. Database Issues
Problem: AI generates inefficient database schemas and queries.
Common Examples:
- No indexes on frequently queried fields
- Missing foreign key constraints
- No data validation at database level
- Poor normalization
How to Fix:
-- Bad (AI-generated)
CREATE TABLE users (
id INT,
email VARCHAR(255),
name VARCHAR(255)
);
-- Good (Production-ready)
CREATE TABLE users (
id INT PRIMARY KEY AUTO_INCREMENT,
email VARCHAR(255) NOT NULL UNIQUE,
name VARCHAR(255) NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
INDEX idx_email (email)
);
Action Items:
- Add proper constraints (NOT NULL, UNIQUE, FOREIGN KEY)
- Create indexes on searched/filtered columns
- Use transactions for multi-step operations
- Implement soft deletes when needed
- Use migrations for schema changes
8. API Design
Problem: AI creates inconsistent, poorly documented APIs.
Common Examples:
- Inconsistent response formats
- No API versioning
- Missing status codes
- No rate limiting
How to Fix:
// Bad (AI-generated)
app.get("/user/:id", async (req, res) => {
const user = await getUser(req.params.id);
res.send(user);
});
// Good (Production-ready)
app.get("/api/v1/users/:id", async (req, res) => {
try {
const user = await getUser(req.params.id);
if (!user) {
return res.status(404).json({
success: false,
error: "User not found",
});
}
res.status(200).json({
success: true,
data: user,
});
} catch (error) {
res.status(500).json({
success: false,
error: "Internal server error",
});
}
});
Action Items:
- Use consistent response formats
- Return appropriate HTTP status codes
- Implement API versioning
- Add rate limiting and throttling
- Document endpoints with OpenAPI/Swagger
Quick Fixes Checklist
Use this checklist to audit AI-generated code:
Security:
- No hardcoded secrets (use environment variables)
- Input validation on all user inputs
- Parameterized queries (no SQL injection)
- Authentication and authorization implemented
- Security headers configured
Error Handling:
- Try-catch blocks around async operations
- Validation of external API responses
- User-friendly error messages
- Proper error logging
- Graceful degradation
Performance:
- No N+1 query problems
- Database indexes on queried fields
- Caching for expensive operations
- Pagination for large datasets
- Connection pooling configured
Code Quality:
- Proper folder structure
- Separation of concerns
- No code duplication
- Meaningful variable names
- Comments for complex logic
Testing:
- Unit tests for business logic
- Integration tests for APIs
- Edge cases covered
- CI/CD pipeline configured
Configuration:
- Environment variables for config
- .env.example file created
- Different configs per environment
- No secrets in version control
When to Get Professional Help
Some issues require experienced developers:
- Complex architectural decisions
- Large-scale refactoring
- Performance optimization under load
- Security audits for sensitive data
- Migration to microservices
- Setting up proper CI/CD pipelines
If you’re overwhelmed or need production-ready code fast, get in touch — we specialize in fixing AI-generated code.
Resources
Tools We Recommend:
- ESLint/Prettier - Code quality and formatting
- SonarQube - Static code analysis
- OWASP ZAP - Security scanning
- Jest/Mocha - Testing frameworks
- Docker - Containerization
- GitHub Actions - CI/CD
Further Reading:
Need Help?
Have AI-generated code that needs fixing? We specialize in transforming ChatGPT prototypes into production-ready applications.
Contact Us to discuss your project.
Last updated: December 14, 2025